i

i

= |
D

'
§ ¥

I

- p

Copyright 2025

|

D . - ..

ISILO OS ARCHITECTURE - TECH PAGE

= This is the techo page - skip for business folks

A security-first, privacy-first execution environment for Al agents. Intelligence is free to think, but
every action is mediated through capability-checked proxies and short-lived authority tokens.

Security First Privacy First Al First-Class
The Padded Cell Tokenisation Atomic Agents

The Padded Cell: Each agent runs in isolation—its own Linux user, temp folder in RAM. The only way out is through
the membrane: proxies that enforce keys, policies and tokenisation. Nothing unlogged, nothing unapproved, nothing persistent.

Privacy First: Agents operate in a tokenised reality. They never see raw PII. Want to send an email? Submit the template and
customer token—the proxy hydrates and sends it. The agent never touches real data.

Al as First-Class: Agents are atomic folders using the Markdown Operating System pattern.

Markdown files are operating instructions, not docs. Python provides tools for computation. The refund-agent/

LLM handles reasoning. Everything is plain text—when something breaks, you can read the main. py

tools.py

instructions, check the state, review outputs. No black boxes. playbook.md

policy.yaml

Proxy Services: Agents talk only to proxies—database, email, SMS. Each request requires both base
keys (agent's role capabilities) and task keys (this customer, this case). No direct Redis access; just
Redis-like access where you throw your JWT at every interaction.

Event-Driven Router: The router isn't HT'TP—it's an event-driven kernel on queues. Frontends fire events

Router (TaskCreated, Escalate, Complete). The router consumes them, applies routing rules from a fixed transition map,
The Kernel mints task keys, emits new events. No agent-to-agent comms. No RPC tangle. Pure message flow.
A fae;’;s Rl Humans Are Agents Too: Same tools, same markdown instructions, same proxy constraints, same task keys.
Logs everything. Route to human when: agent offline, request exceeds authority, customer gets nasty, or shadow-mode 1-in-N for

continuous evaluation.

The Four Pillars

Base Keys Task Keys

Stable capabilities per role. "Refund up to $500". Never contains PIIL. Short-lived tokens for this customer, this case. Evaporates when done.
Tokenisation Stateless Execution

Sensitive data stays in proxy. Agents work only with tokens. main.py runs once, produces outputs, dies. No memory, no drift.

Tokenised data. Capability-bound actions. Stateless workers. Event-driven router holding the keys.

Horizontal by default—run more copies, no coordination, no locks. Stop trying to trust AL Build the cell.

It's the Matrix in reverse. Instead of humans plugged into a simulation, SiloOS plugs in
the agents—and lies to them, politely and securely, about what "reality" is.

AGENTS don't see the real database. AGENTS don't see real customers. AGENTS live inside a
padded cell fed a tokenised world—handles, abstractions, shadows projected onto the cell wall.
The membrane interprets what the agent thinks it's doing, maps it to safe actions, and enforces
strict physics inside the simulation.

When an agent hesitates, we plug in a human. Same workspace, same tools—but the human

knows the membrane is there. The agent just blinks behind its window, seeing whatever SiloOS - WU U LD YUU TRUST M E 2
allows. In the Matrix, humans live in a simulation controlled by machines. In SiloOS,)

machines live in a simulation controlled by humans. S i I 0 0 S D 0 ES N ’T
°

ITHE TRUST FALLACY

Why every current approach to Al security shares the same fundamental flaw

Every approach to Al security currently deployed assumes we can make AI trustworthy enough to grant it access. This
assumption isn't just optimistic—it's architecturally backwards. Trust is the wrong security model for an entity that writes its
own code at runtime.

Walk into any enterprise IT department and you'll encounter four strategies:
alignment training (a research problem, not engineering solution), guardrail 9 5 0 /
prompts (security by obscurity), human oversight (defeats the point of Al speed), O
and policy frameworks (detect violations after the fact). Together, they create an

a1 of Al initiatives stall before reaching
illusion of security without preventing anything.

production
MIT"s State of Al in Business 2025 reveals why: not lack of

capability, but friction—security reviews, compliance
checks, organizational change.

Policies don't prevent—they document. After-the-fact auditing doesn't stop the
Why Current Approaches Fail data leak, the unauthorized refund, or the privacy violation.
Alignment: Can be jailbroken
Prompts: Can be overridden
Oversight: Doesn't scale
Policies: Detect, don't prevent

Traditional Security vs. Al Agent Reality

Traditional Assumptions Al Agent Reality

- You control the code - Al writes code at runtime

- Behavior is deterministic - Non-deterministic behavior

- Audit before deployment - Can't audit what hasn't been generated

This is a fundamental incompatibility between security model and system.
Traditional security evolved for deterministic systems. Al writes code at runtime The Trust Model Doesn't Fit
that can't be pre-audited. AT e
We trust humans through accountability and consequences. Al agents have none - Accountability (who do you fire?)
of these properties. The industry has anchored on the wrong question: "How do - Reputation to protect
we make Al trustworthy?” This leads to endless security reviews and compliance " B T e
theat - Organizational loyalty
eater. {

The Right Question:

"How do we build systems where AI's trustworthiness doesn't matter?"
This reframes the problem from alignment (unsolved) to architecture (solvable). The system compensates through

containment.

This is a fundamental shift from controlling the AI to controlling what it can access. One path leads to research labs and
decade-long timelines. The other leads to production systems you can deploy next quarter.

ITHE PADDED CELL

Security architecture that makes Al trustworthiness irrelevant

SiloOS is built on a radical premise: don't make Al trustworthy—make its

The Prisoner Analogy trustworthiness irrelevant. The Al doesn't need to be safe if its environment is

Genius-level intelligence. Profound insights. secure.

Cenmg Gty untrustvxlzor e Wi el et ey Traditional security restricts capability to be safe. SiloOS inverts this: expand

can do—but you can't let them out. e . . . o
capability, restrict scope. Give the agent everything it needs to work brilliantly—

Solution: A padded cell. Not to torture, but to full LLM reasoning, rich tools, decision authority. But wall off the scope. It can

contain. Full capability, walled scope. work on what you give it. Nothing else.

The Four Pillars
The padded cell isn't a metaphor—it's an architecture. Four interconnected pillars turn theory into deployable infrastructure:

1. Base Keys
What the agent type can do. Role-based capabilities: refund:max_$500 , email:send

2. Task Keys
What this specific instance can access. Scoped to customer, case, session: customer:TOKEN_847a2 , expires:20min

3. Tokenization
Agent never sees real PII. Works with tokens: [NAME_1] , [EMAIL_1] —never "Jane Smith"

4. Stateless Execution
Each invocation starts fresh. No persistent memory. Context terminates when task completes. Clean slate.

These pillars are composable. Base keys define capability—once. Task keys scope
data access—per invocation. Tokenization protects privacy—by default. Stateless Zero Trust for Al

execution prevents accumulation—always. Traditional zero trust assumes you control the
code. Al agents write code at runtime—

The result: security that scales O(1) with agent count, not O(n). The AI "literall
i Hw & ’) Y emergent behaviors can't be pre-audited.

cannot” exceed scope—not shouldn't, not is told not to. Architecture makes it
impossible. SiloOS adapts zero trust: Unique identity per
agent. No implicit trust. Continuous
verification based on who, what, and when.

Defence in Depth

SiloOS layers multiple independent controls. Any single failure doesn't compromise the system:

1. Container isolation + Linux capabilities 2. Network segmentation (agent — proxy only)
3. Key validation at proxy (JWT tokens) 4. Tokenization layer (PII never reaches agent)
5. Immutable audit logs 6. Stateless execution (context terminates)

Assume breach posture: Design as if the A will misbehave—because we can't prove it won't.

Why This Matters

You know the security principles—least privilege, zero trust. You don't have the pattern for Al Traditional security assumes you

IBASE KEYS AND TASK KEYS

The architectural separation that makes SiloOS security work

The core innovation of SiloOS lies not in what it restricts, but in how it separates.

Every security model before this conflated two fundamentally different The Independence Principle

i . 3 ? . ? .
questions: What can this agent do? And what data can it touch? SiloOS tears them Base Keys: What the agent can do (capabilities,
apart. limits, escalation rights)
Think about a customer service representative. They have a job description— Task Keys: What data it can access (customer
what they're authorized to do. Process refunds up to $500. Send emails. Escalate token, case ID, session)

. L ,
when needed. But that job description doesn't grant them access to every Both must be satisfied. Neither can compensate for the

customer record. When they log in, they get access to this customer, this case, this absence of the other.

conversation.

The job description is the base capability. The case assignment is the scoped access. Base keys define agent authority. Task
keys define data scope. Both must be satisfied for any action.

Why Separation Matters

Without Separation With Separation

+ Access control becomes all-or-nothing - Agent has capability but can't act without task key

- Capability limits require data access to enforce - Task key grants access but can't enable actions without
- Scaling requires duplicating access grants base key

- Job roles change independently of task assignments

Base keys are the job description. They encode what an agent type is

The Security Matrix authorized to perform. A customer service agent might have base

keys for refunds up to $500, sending emails, escalating to a manager.

Situation Base Task Result A collections agent might have authority for higher refunds, payment
Normal operation v v Allowed plans, account suspension.

Exceeds authority x v Escalate Task keys are the case assignment. They encode the specific

Wrong data scope v X Rejected customer, case, or session this particular invocation relates to. When a
Both missing X X Rejected customer chat arrives, the router mints task keys for that interaction.

Not for all customers. Just this customer, this case, this conversation.
The keys are scoped, temporary, and expire when the task completes.

This separation is why SiloOS can grant agents powerful capabilities without risking broad data exposure. The refund agent
might have authority to issue $500 refunds—but without a customer task key, it can't refund anyone. The capability exists in
the abstract. The task key makes it concrete.

"The task keys are really just the customer token and the case ID. The functionality is in the agent. The
S500 limit is on the agent base stuff."

SiloOS uses JWT-style tokens for both key types—a well-understood, cryptographically sound, stateless pattern proven at
scale. Recent academic research on "Agentic JWT" validates this approach, proposing extensions that cryptographically bind
each agent action to verified user intent—exactly the pattern SiloOS implements. Both must be satisfied for any action. The
agent must have the capability and the scoped access. Neither can substitute for the other.

ICHAPTER 5: TOKENISATION

The Agent Never Sees Real Data

Privacy isn't a feature you bolt on—it's an architectural
Privacy by Architecture foundation. Large language models are phenomenal tools and
In Silo0S, agents work with tokenised phenomenal privacy risks. They may retain echoes of training
it R data. Prompts can be logged, leaked. Third-party LLM APISs sit

[EMAIL_1] —never touching actual PIL . . .
outside your security perimeter.

The proxy holds the mapping and hydrates

tokens only when actions execute. This Between 2024 and 2025, employee data flowing into GenAl
satisfies GDPR, CCPA, and legal teams through

services grew 30x almost overnight. Traditional perimeter
architectural impossibility, not policy

security fails because the perimeter has shifted—to browser
windows and prompt interfaces where sensitive content is

documents.

routinely shared.

Tokenisation replaces real PII with reversible tokens before any agent access. The agent reasons about
customers, makes decisions—it just never sees actual names, addresses, or contact details.

Notice what's not tokenised: account balance, order

What the agent sees:

counts. These are operationally necessary and not ¢

personally identifying. The agent needs to reason “name: “?AME—”]
"email": "[EMAIL_11",

about whether a $247.50 balance justifies a refund. "phone": " [PHONE_11",

That context stays visible. "balance®: 247.50,

"orders": 8

When the agent needs to take action—send an email,
validate a phone number—the proxy hydrates the

Non-sensitive data (balances, counts) remains clear. PII is always

template with real data. The agent reasons about the ~ fokenised
customer without seeing who they are.

Wells Fargo: 245M Interactions, Zero PIl Exposure

Speech transcription locally — audio never leaves secure environment ~ LLM receives anonymised context only — external model treated as

Query routing internal — uses internal models untrusted

The Flow

Router sends task with customer token tok_8f3k2 . Agent requests data. Proxy validates, retrieves, tokenises PII,

sends tokenised structure. Agent processes without seeing identifiers. When executing—"Send refund email to
[EMAIL_1] "—proxy hydrates and executes. Audit log shows tokens only.

This is compliance revolution. When legal asks "how do we ensure Al
Microsoft Presidio doesn't misuse customer data?” the answer is architecture—the Al can't

Open-source PII detection. Al never sees real data. misuse data it never sees.
Compliance through architecture.

ISTATELESS EXECUTION

Each agent invocation starts fresh. No persistent memory between runs. No accumulated context

from previous customers. No data leakage across sessions. This is both security architecture and

operational elegance.

When you deploy Al agents in production, one of the most powerful decisions is
whether to give them memory. Intuition says agents should remember previous
conversations, past customers, and learn from experience.

SiloOS says the opposite. Agents start fresh, every time.

Stateless execution means no memory of previous tasks. Each invocation is
completely independent. The agent processes it, returns a result, then the entire
execution context—conversation history, intermediate attempts, error logs,
temporary files—vanishes.

Security and Architecture Wins

X Access prior customer data
X Persist malicious code

customers ago.

The Temp Folder Pattern

The Lifecycle

1. Task arrives

2. Keys issued (scoped)
3. Agent processes

4. Result returned

5. Context terminates
6. Fresh instance next

When an agent has no memory, entire classes of attacks become
Attack Containment impossible. Customer A's data can't leak into Customer B's session
A compromised agent cannot: because there's no session. If an agent extracts sensitive information, it
vanishes when the task ends.
Horizontal scaling is trivial. Need more load? Spin up more instances.
X Accurnulate credentials They don't coordinate, don't share state, don't step on each other's toes.
X Build database knowledge Debugging is reproducible. Grab the task inputs, keys, and agent code.
Re-run. Same result every time. No mysterious state from five

Agents can only write to a temporary folder that gets wiped when the task completes. Often RAM-based for

speed and security.

RAM Disk Session Dir
Fast, secure, auto-cleared on exit Flexible for large files

Sub-Agents and Context Evaporation

The sub-agent pattern: spawn a temporary agent for messy subtasks. It works in
isolation, handles errors, accumulates state—then returns a clean artifact and
terminates. Everything evaporates. Main agent receives only the result.

What Persists, What Evaporates

Container FS
Maximum isolation

The Pattern
Example: Generate 8 images
Without sub-agents: 15,000 tokens of logs

With sub-agents: 600 tokens. Sub-agent's
journey evaporates.

Business data (persistent): Customer records, case status, refund transactions. Written to the database through the proxy

with valid task keys.

Audit logs (persistent): Every action—data accessed, keys used, actions performed. Logged centrally for compliance.
Agent state (ephemeral): Working memory, conversation history, intermediate files. Vanishes when the task completes.

|'_|'HE MARKDOWN OPERATING SYSTEM

When an agent is just a folder

When you picture an Al agent, you might imagine thousands of lines of code,
The Folder Philosophy intricate state machines, elaborate frameworks. In SiloOS, an agent is none of

An agent is a folder. That folder contains that. An agent is a folder containing plain text files.
everything it needs: entry point, tools,

instructions, templates. Nothing more. This is the Markdown Operating System—a radically simple architectural

pattern where agents run on markdown files, not frameworks. These files aren't
documentation. They're the actual operating instructions. Human-readable.
Version-controllable. Auditable.

main.py
tools.py

instructions.md
escalation.md
templates/

That's it. That's an agent. A folder. Simple to understand, easy to deploy, inspectable by humans. The entire behavior of a
customer service agent lives in plain text files that anyone can read.

The Four Components

Markdown OS rests on four pillars: folders, markdown, Python, and scheduling.

Folders are agent workspaces. Each agent has its own folder—a self-

contained unit. Deploy by uploading. Update by replacing. Why Markdown Works
Markdown contains human-readable instructions. Policies, escalation v Human-Readable: Anyone can review
policies

rules, procedures. Not documentation—actual instructions the agent
executes. v Version Control: Git tracks all changes

Python handles efficiency. Data-heavy operations that shouldn't go VAR S N B R e by

through the LLM. LLMs excel at reasoning but fail at math—Python v Portable: No framework lock-in
handles calculations and API calls.

Scheduling provides automation. When and how agents run. The router decides when to wake them, what task to assign,
when to shut down.

Token Efficiency: 4x Better

Model Context Protocol (MCP) sends tool descriptions in every request—thousands of tokens just describing what tools are
available. For 20 tools, you burn 5,000-8,000 tokens per request before processing the customer's question.

Markdown OS loads instructions once. Tools are called directly, not described in context. Result: 4x more token-efficient. At
100,000 requests/day, that's 600M fewer tokens—roughly $1,200/day savings on Claude 4.5 pricing.

Deployment: Small, Atomic, Shippable

The folder is the deployment unit. Want to update the refund agent's escalation policy? Edit escalation.md . Commit.
Deploy. Done. No months-long sprints. No coordination across teams. No deployment windows.

ITHE ROUTER AS KERNEL

The security foundation that makes safe Al operations possible

In any operating system, there's a critical principle: processes don't talk directly
to hardware. They go through the kernel. The kernel manages resources, enforces The Kernel Principle
permissions, and ensures no process can do something it shouldn't. In SiloOS, the Processes don't talk directly to hardware—they
router plays exactly the same role—it's the kernel that makes safe Al operations go through the kernel. In SiloOS, agents don't
possible. talk directly to each other—they route through
When you first think about multi-agent systems, the intuitive design is peer-to- the router.

\

peer: agents talking to other agents, collaborating directly. It sounds elegant. It
feels like how humans work together.
It's also a security nightmare.

Why Not Agent-to-Agent?
The temptation to build agent-to-agent communication is strong. Modern frameworks encourage it. But here's what actually

happens: routing logic gets distributed everywhere, security boundaries become fuzzy, debugging becomes impossible, and
monolithic codebases emerge.

The Router's Six Responsibilities

1. Task Receipt 2. Agent Selection

Single entry point for all tasks Determines which agent handles it
3. Key Minting 4. Dispatch

Creates task keys for interaction Sends task + keys to agent

5. Result Handling 6. Logging Everything

Logs outcomes, manages escalations Complete audit trail

SiloOS makes a different choice: agents don't communicate directly. They route through the kernel. This centralization isn't a
bottleneck—it's the source of SiloOS's security guarantees.

Single Point of Trust

By making the router the only trusted component, we make the entire
system more secure. The router is the only component that can mint
keys, route tasks, authorize escalations, and write to the audit log.

The Escalation Pattern
Agent can't handle a $700 refund (limit: $500)?

It doesn't call the manager directly.

It hands back to the router: "I can't do this. Everything else—all the agents—is untrusted by design.
Reason: amount exceeds authority. This means you write the router once, audit it carefully, lock it down.
Recommend: approve.” Then you can iterate on agents rapidly because they're operating in a
Router then routes to manager with fresh task keys. Clean, security sandbox that doesn't depend on trusting them.

auditable, secure.

Keeping Agents Atomic

Perhaps the most underrated benefit: the router pattern keeps agents simple. When agents route through the kernel, they
don't need to know about each other. They don't need complex multi-agent protocols. They just need to know: "If I can't
handle this, return to router.”

This is the antidote to framework bloat. With router-based orchestration, agents stay atomic—small, independently
deployable units. Update one agent folder, push to git, deploy. No coordination needed. No other agents affected.

The router isn't overhead—it's the foundation that makes safe, scalable multi-agent operations possible. Centralized control,
distributed execution.

ISOLATION

Containers, jails, and sandboxes—the kernel-level enforcement that makes agent containment real

The padded cell isn't just a metaphor. In SiloOS, every agent runs in genuine
Defense in Depth technical isolation—layers of operating system primitives that enforce
Layer 1: JWT keys validate capabilities containment. Linux jails, Docker containers, seccomp profiles, network

Layer 2: Tokenization hides real data namespaces: these are the bars on the cell door.

Layer 3: Proxy enforces access control We've established that agents are untrusted. We've given them capabilities and

Layer 4: Container isolation prevents escape scoped access. We've tokenized the data. But that's software enforcement. What
Layer 5: Network rules allow only proxy happens if the agent finds a bug in your proxy?

I I il th tect you. L. L . . .
f one layer fails, four others protect you Technical isolation is the answer. We run the agent in a restricted environment

where it physically cannot access resources outside its cell—even if it tries. Even if
our software has bugs.

"In our design, the Al literally cannot do X without permission—the identity system won't
4 1
Microsoft Engineering, "Zero-Trust Agents”

Not "shouldn't.” Not "is discouraged from."” Cannot. The architecture makes it impossible.

The Gold Standard: Docker + gVisor

Container Security

Docker provides namespace isolation. Each container sees its own v Drop all capabilities — Agent has no
process tree, its own network stack, its own filesystem. From inside the privileged operations
container, the agent can't see other containers, can't see the host's v Apply seccomp profile — Whitelist only

processes, can't see the host's files. It's in a bubble. essential system calls

v Read-only filesystem — Agent can't modify

gVisor adds a user-space kernel layer. Traditional containers share the -
code or persist files

host kernel—if the agent finds a kernel exploit, it can break out. gVisor
intercepts all system calls and runs them through a sandboxed kernel
implementation. Even kernel exploits can't escape.

v Network isolation — Only proxy
connection allowed

v Resource limits — CPU, memory, disk
quotas enforced

The Threat Model

Assume the agent is actively hostile. It might try to:

x Access files it shouldn't (customer database, encryption x Make network connections (exfiltrate data to external
keys) servers)
x Escalate privileges (become root, install backdoors) x Consume unbounded resources (denial of service)

Technical isolation makes all of these impossible—not through the agent's good behavior, but through kernel-level enforcement.

Each agent invocation gets a fresh container. The filesystem is ephemeral. Any files written to /tmp vanish when the
container terminates. The agent can't leave breadcrumbs, accumulate state, or persist malware. Every task starts from a
known-good baseline.

IPLUG IN A HUMAN

When the architecture proves itself: humans as fallback agents

This is the moment when you know the architecture is right. Your
refund agent has been running smoothly for weeks, handling
hundreds of customer cases per day. Then something changes.
The agent starts approving refunds it shouldn't. You need to take it
offline immediately for debugging.

In a traditional system, this would be crisis mode. Workflows

The Inversion
Traditional: Al assists humans.

SiloOS: Humans assist Al

The human is the fallback when Al needs
maintenance or encounters edge cases.

break. Customers get errors. Engineers scramble. But in SiloOS, you simply mark the agent offline. The
router sees it's unavailable and routes new tasks to a human operator instead. No crisis. No downtime.

Just a channel switch.

The human uses the same interface, same tools, same security model. They see tokenized customer
context— [NAME_1] , [EMAIL_1] —the conversation history, available tools from tools.py ,
instructions from instructions.md ,and policy limits. They click "Validate Phone Number” (a tool
the agent would have called programmatically), enter the amount, process the refund. Done.

This is what we mean by "plug in a human.” The system doesn't

Human as Agent

In SiloOS, a human operating through the
interface is an agent:

— Has base keys (job authority)

care whether it's routing to Python code or a human operator—the
boundaries are identical. When your architecture treats humans
and Al as equivalent participants constrained by the same rules,

- Receives task keys (access to this case) you've achieved something rare: a security model that doesn't
— Uses tools (via UI clicks) depend on who is executing, only on what they're allowed to do.

— Follows instructions (markdown)

— All actions logged and auditable The use cases are immediate: Maintenance windows (update the
agent without service interruption). Testing (route 1-in-100 cases

to humans for comparison). Edge cases (fraud suspicion, regulatory exceptions). Training data

(human handling reveals exactly where agents fail).

The Bottom Line

Remember: 95% of Al pilots stall before reaching production. Not because Al isn't capable.
Because we've been trying to solve an architecture problem with alignment techniques.

SiloOS answers with concrete patterns: base keys for capability, task keys for scope, tokenization
for privacy, stateless execution for safety, router as kernel for orchestration, technical isolation for

containment, everything logged for auditability.

Stop trying to trust AL Build the cell instead.

